关于JS的浮点数的计算更是之前没有用过,这次写JS项目发现的这个问题:0.1+0.2=0.3000000000004,为什么会出现这么奇怪的问题呢 ?在网上找了一些资料,JS作为解释性语言,直接计算会有浮点数精度丢失问题。 门弱类型语言的JavaScript ,从设计思想上就没有对浮点数有个严格的数据类型。
在用javacript计算浮点数时,出现计算精度问题,这也是JS浮点数精度问题原因及解决方法
会出现精度问题,一些常见的例子如下:
// 加法 ===================== 0.1 + 0.2 = 0.30000000000000004 0.7 + 0.1 = 0.7999999999999999 0.2 + 0.4 = 0.6000000000000001 // 减法 ===================== 1.5 - 1.2 = 0.30000000000000004 0.3 - 0.2 = 0.09999999999999998 // 乘法 ===================== 19.9 * 100 = 1989.9999999999998 0.8 * 3 = 2.4000000000000004 35.41 * 100 = 3540.9999999999995 // 除法 ===================== 0.3 / 0.1 = 2.9999999999999996 0.69 / 10 = 0.06899999999999999
toFixed奇葩问题
在遇到浮点数运算后出现的精度问题时,刚开始我是使用toFixed(2)来解决的,因为在W3school和菜鸟教程(他们均表示这锅不背)上明确写着定义:toFixed()方法可把Number四舍五入为指定小数位数的数字。
但是在chrome下测试结果不太令人满意:
1.35.toFixed(1) // 1.4 正确 1.335.toFixed(2) // 1.33 错误 1.3335.toFixed(3) // 1.333 错误 1.33335.toFixed(4) // 1.3334 正确 1.333335.toFixed(5) // 1.33333 错误 1.3333335.toFixed(6) // 1.333333 错误
为什么会产生出错浮点精度问题?
让我们来看一下为什么0.1+0.2会等于0.30000000000000004,而不是0.3。首先,想要知道为什么会产生这样的问题,让我们回到大学里学的复杂的计算机组成原理。
浮点数的存储
和其它语言如Java和Python不同,JavaScript中所有数字包括整数和小数都只有一种类型 — Number。它的实现遵循 IEEE 754 标准,使用64位固定长度来表示,也就是标准的 double 双精度浮点数(相关的还有float 32位单精度)。
这样的存储结构优点是可以归一化处理整数和小数,节省存储空间。
64位比特又可分为三个部分:
符号位S:第 1 位是正负数符号位(sign),0代表正数,1代表负数
指数位E:中间的 11 位存储指数(exponent),用来表示次方数
尾数位M:最后的 52 位是尾数(mantissa),超出的部分自动进一舍零
浮点数的运算
那么JavaScript在计算0.1+0.2时到底发生了什么呢?
首先,十进制的0.1和0.2会被转换成二进制的,但是由于浮点数用二进制表示时是无穷的:
0.1 -> 0.0001 1001 1001 1001...(1100循环) 0.2 -> 0.0011 0011 0011 0011...(0011循环)
IEEE 754 标准的 64 位双精度浮点数的小数部分最多支持53位二进制位,所以两者相加之后得到二进制为:
0.0100110011001100110011001100110011001100110011001100
因浮点数小数位的限制而截断的二进制数字,再转换为十进制,就成了0.30000000000000004。所以在进行算术计算时会产生误差。
解决方法
解决toFixed,我们通过判断最后一位是否大于等于5来决定需不需要进位,如果需要进位先把小数乘以倍数变为整数,加1之后,再除以倍数变为小数,这样就不用一位一位的进行判断。
针对以上两个问题,网上搜了一波解决方法,基本都大同小异的,分别来看一下。针对toFixed的兼容性问题,我们可以把toFix重写一下来解决,代码如下:
// toFixed兼容方法 Number.prototype.toFixed = function(len){ if(len>20 || len<0){ throw new RangeError('toFixed() digits argument must be between 0 and 20'); } // .123转为0.123 var number = Number(this); if (isNaN(number) || number >= Math.pow(10, 21)) { return number.toString(); } if (typeof (len) == 'undefined' || len == 0) { return (Math.round(number)).toString(); } var result = number.toString(), numberArr = result.split('.'); if(numberArr.length<2){ //整数的情况 return padNum(result); } var intNum = numberArr[0], //整数部分 deciNum = numberArr[1],//小数部分 lastNum = deciNum.substr(len, 1);//最后一个数字 if(deciNum.length == len){ //需要截取的长度等于当前长度 return result; } if(deciNum.length < len){ //需要截取的长度大于当前长度 1.3.toFixed(2) return padNum(result) } //需要截取的长度小于当前长度,需要判断最后一位数字 result = intNum + '.' + deciNum.substr(0, len); if(parseInt(lastNum, 10)>=5){ //最后一位数字大于5,要进位 var times = Math.pow(10, len); //需要放大的倍数 var changedInt = Number(result.replace('.',''));//截取后转为整数 changedInt++;//整数进位 changedInt /= times;//整数转为小数,注:有可能还是整数 result = padNum(changedInt+''); } return result; //对数字末尾加0 function padNum(num){ var dotPos = num.indexOf('.'); if(dotPos === -1){ //整数的情况 num += '.'; for(var i = 0;i<len;i++){ num += '0'; } return num; } else { //小数的情况 var need = len - (num.length - dotPos - 1); for(var j = 0;j<need;j++){ num += '0'; } return num; } } }
解决浮点数运算精度
既然我们发现了浮点数的这个问题,又不能直接让两个浮点数运算,那怎么处理呢?
我们可以把需要计算的数字升级(乘以10的n次幂)成计算机能够精确识别的整数,等计算完成后再进行降级(除以10的n次幂),这是大部分变成语言处理精度问题常用的方法。例如:
0.1 + 0.2 == 0.3 //false (0.1*10 + 0.2*10)/10 == 0.3 //true
但是这样就能完美解决么?细心的读者可能在上面的例子里已经发现了问题:
35.41 * 100 = 3540.9999999999995
看来进行数字升级也不是完全的可靠啊,但是魔高一尺道高一丈,这样就能难住我们么,我们可以将浮点数toString后indexOf('.'),记录一下小数位的长度,然后将小数点抹掉,完整的代码如下:
/*** method ** * add / subtract / multiply /divide * floatObj.add(0.1, 0.2) >> 0.3 * floatObj.multiply(19.9, 100) >> 1990 * */ var floatObj = function() { /* * 判断obj是否为一个整数 */ function isInteger(obj) { return Math.floor(obj) === obj } /* * 将一个浮点数转成整数,返回整数和倍数。如 3.14 >> 314,倍数是 100 * @param floatNum {number} 小数 * @return {object} * {times:100, num: 314} */ function toInteger(floatNum) { var ret = {times: 1, num: 0} if (isInteger(floatNum)) { ret.num = floatNum return ret } var strfi = floatNum + '' var dotPos = strfi.indexOf('.') var len = strfi.substr(dotPos+1).length var times = Math.pow(10, len) var intNum = Number(floatNum.toString().replace('.','')) ret.times = times ret.num = intNum return ret } /* * 核心方法,实现加减乘除运算,确保不丢失精度 * 思路:把小数放大为整数(乘),进行算术运算,再缩小为小数(除) * * @param a {number} 运算数1 * @param b {number} 运算数2 * @param digits {number} 精度,保留的小数点数,比如 2, 即保留为两位小数 * @param op {string} 运算类型,有加减乘除(add/subtract/multiply/divide) * */ function operation(a, b, digits, op) { var o1 = toInteger(a) var o2 = toInteger(b) var n1 = o1.num var n2 = o2.num var t1 = o1.times var t2 = o2.times var max = t1 > t2 ? t1 : t2 var result = null switch (op) { case 'add': if (t1 === t2) { // 两个小数位数相同 result = n1 + n2 } else if (t1 > t2) { // o1 小数位 大于 o2 result = n1 + n2 * (t1 / t2) } else { // o1 小数位 小于 o2 result = n1 * (t2 / t1) + n2 } return result / max case 'subtract': if (t1 === t2) { result = n1 - n2 } else if (t1 > t2) { result = n1 - n2 * (t1 / t2) } else { result = n1 * (t2 / t1) - n2 } return result / max case 'multiply': result = (n1 * n2) / (t1 * t2) return result case 'divide': result = (n1 / n2) * (t2 / t1) return result } } // 加减乘除的四个接口 function add(a, b, digits) { return operation(a, b, digits, 'add') } function subtract(a, b, digits) { return operation(a, b, digits, 'subtract') } function multiply(a, b, digits) { return operation(a, b, digits, 'multiply') } function divide(a, b, digits) { return operation(a, b, digits, 'divide') } // exports return { add: add, subtract: subtract, multiply: multiply, divide: divide } }();
如果觉得floatObj调用麻烦,我们可以在Number.prototype上添加对应的运算方法。
附:JS浮点数精度问题的一些实用建议
考虑到每次浮点数运算的偏差非常小(其实不然),可以对结果进行指定精度的四舍五入,比如可以parseFloat(result.toFixed(12));
将浮点数转为整数运算,再对结果做除法。比如0.1 + 0.2,可以转化为(1*2)/3。
把浮点数转化为字符串,模拟实际运算的过程。
综上,建议使用第三种方案,目前已经有了很多较为成熟的库,我们可以根据自己的需求来选择对应的工具。并且,这些库不仅解决了浮点数的运算精度问题,还支持了大数运算,并且修复了原生toFixed结果不准确的问题。